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1 The Sunflower Lemma

1.1 Introduction to the sunflower lemma

Today, we will be discussing the work of Alweiss, Lovett, Wu, and Zhang (with some
simplifications in presentation by Rao, Tao, BCW). The sunflower lemma has been long
open and was one of Erdős’ favorite unsolved problems.1 The setting of the lemma comes
from extremal combinatorics.

Let U = [n], and let S1, S2, . . . , Sm ⊆ U of size w.

Definition 1.1. An r-sunflower is a a set system where for any i 6= j, Si ∩ Sj =
⋂

k Sk.

In other words, all the points sit in the core of the sunflower or in one of the petals.
The question we are interested in is: How large does m need to be before the must exist
an r-sunflower in S1, . . . , Sm?

Theorem 1.1 (Erdős-Rado, 1960). If m > (r− 1)w ·w!, then there exists an r-sunflower.

1He even offered a $1000 prize for solving the problem.
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Conjecture 1.1 (Sunflower conjecture). There exists a constant Cr such that if m >
(Cr)

w, then there exists an r-sunflower.

For many years, the only improvements were polynomial in w (many of which are from
the last decade). Here is a lower bound.

Proposition 1.1. There exists a family of (r − 1)w sets with no r-sunflower.

Proof. Consider a square lattice of points of size (r−1)×w. Define the sets Si by selecting
exactly 1 element in every column.

Here is an application: Razborov showed that if you try to compute the clique problem
with monotone circuits, the size of the circuit cannot be polynomial. The clique problem
is monotone in the input, which is why we consider monotone circuits. Razborov used
the sunflower lemma in his proof; the idea is to replace the sunflower by the core, which
allows you to make the circuit smaller and smaller, yielding a contradiction. There are also
applications for lower bounds for data structures.

Theorem 1.2 (ALWZ, 2020). If m ≥ (C · r3 · logw · log logw)w, then there exists an
r-sunflower.

Quick followups by Rao, Tao, and BCW cleaned up the argument to give the bound

m ≥ (Cr logw)w.

1.2 Proof sketch of ALWZ

Let’s provide a proof of the result by Erdős and Rado.

Proof. We take a greedy approach. Try to find disjoint sets among S1, . . . , Sm. If we are
successful, then we are done. Otherwise, there exists a set T (the union of up to r− 1 sets
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from S1, . . . , Sm) with |T | ≤ (r − 1)w and T intersects each Si. Therefore, there exists an
element i ∈ T that appears in ≥ m

|T | of the sets. We write

m

|T |
>

(r − 1)ww!

(r − 1)w
= (r − 1)w−1(w − 1)!.

Look at all the sets containing i, and remove i from them. By induction, we find an
r − 1-sunflower among them. Then add i back in to get an r-sunflower.

The first case of these theorem is the typical case when picking random sets, while
the second case is more structured. This is an example of the structure vs randomness
paradigm, where we show that every object can be decomposed into a structured object and
a random object. For example, a boolean function can be decomposed into the influential
coordinates (structured part) and the remaining coordinates (random part).

Definition 1.2. A family F = {S1, . . . , Sn} is k-spread if for every subset Z ⊆ U of size
≤ w,

|{Si : Si ⊇ Z}| ≤ k−|Z| · |F|.

Notice that a k-spread family must be of size ≥ kw because if we take Z = S1, we get
1 ≤ k−w|F|.

Here is the main lemma from the proof by ALWZ:

Lemma 1.1. If F = {S1, . . . , Sm} has > kw sets and F is k-spread (for k = k(r, w) =
Cr logw), then F contains r disjoint sets.

Assuming this main lemma, here is the proof of the theorem. It is similar to the proof
of Erdős and Rado.

Proof of ALWZ theorem. If F is k-spread, we are done by the lemma. Otherwise, there
exists a Z such that

|{Si : Si ⊇ Z}| > k−|Z|kw.

Look at all the sets containing Z, and remove Z from them. By induction, we find an r-
sunflower among them. Then add Z back in to get an r-sunflower in the original family.

How do we prove the lemma? One naive approach is to partition the universe U into r
sets and take an Si from each of the pieces of the partition. It turns out that this approach
works.

Proof idea of spread lemma. Partition the universe U to uniformly at random chosen 2r
subsets. Show that each part (of size n

2r ) contains a set from F with probability ≥ 1/2.
By the linearity of expectation, the average number of partition sets containing an Si is
≥ r. So there exists a choice of partition such that r of the parts contain a set Si from F .
Thus, we have found r disjoint sets.
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Here is how we show that each part of the partition contains a set from F with proba-
bility ≥ 1/2. Pick p = 1

2r . We take W to be a uniform random subset of U of size pn. We
want to show that

PW (∃j s.t. Sj ⊆W ) ≥ 1

2
.

Say that W is bad if for all j, |Sj \W | ≥ w/2. We want to show that P(W is bad) is
small. Call a set Si compressible with respect to W if there exists a set Sj ∈ F such that
Sj ⊆W ∪ Si and |Sj \W | ≤ w/2.

If W is bad, then no set is compressible. We will show that most sets are compressible.

We use the following lemma, which is similar to the argument in the H̊astad switching
lemma.

Lemma 1.2. PW,Si∈F (Si is compressible) = 1− o(1)

Proof. Call (W,Si) bad if Si is incompressible. Encode bad pairs (W,Si) as follows:

• Encode W ∪ Si (
(
n
pn

)
+
(
pn+1
+

)
· · ·+

(
n

pn+w

)
≤
(
n
pn

)
· 1
pw options).

• Let Sj be the lexicographically first set in F that is contained in W∪Si. (By definition
of “bad,” |Sj \W | > w/2.)

• Encode Si ∩ Sj (2w options).

• Encode the index of Si among all sets containing Si ∩ Sj (|F|k−|Si∩Sj | ≤ |F|k−w/2

options).

• Encode Si ∩W (2w options).

4



We get that

#Bad (W,Si)

#(W,Si)
≤
(
n
pn

)
1
pw 4w|F| 1

kw/2(
n
pn

)
|F|

≤
(

4

p
√
k

)w

.

So picking appropriately large k gives the result.

We then compress logw times, each time decreasing the number of exceptional points
by half. The argument does this by induction, and we omit the details.
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